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ABSTRACT

Experience at the AEDC with the three-dimen-

sional (3-D), chimera grid embedding scheme is

described. Applications of the inviscid version to

a multiple-body configuration, a wing/body/tail

configuration and an estimate of wind tunnel wall

interference are described. Applications to viscous

flows include a 3-D cavity and another multi-body

configuration. A variety of grid generators is

used, and several embedding strategies are de-

scribed.

1.0 INTRODUCTION

In the last ten years, Computational Fluid Dy-

namics (CFD) has evolved from an interesting spec-

tator sport into a necessary, if not integral, part

of aircraft design and development. Two circum-

stances have stimulated this change: the maturation

of fast numerical algorithms for solution of the

Euler and Navier-Stokes equations and the reduction

of the price of the large supercomputers required

to perform the computations. As the entry costs

decrease and the value of flow simulations becomes

more widely recognized, the demands for ever more

complex simulations increase. The heightened level

of expectation also increases pressure to produce

"timely" solutions. This pressure can only be ex-

pected to increase as CFD becomes more closely

coupled to the design and development processes.

Frequently, the most critical phase in meeting the

demand for computations is the construction of a

suitable mesh. To ameliorate the difficulties ex-

perienced with grid generation, alternative compu-

tational strategies are being explored. Basically,

they can be divided into two categories: global

approaches and domain decomposition approaches.

The global mesh approach uses a single compu-

tational net to discretize the geometry and flow

field [e.g., Thompson (1982), Rubbert and Lee

(1982), and Shang and Scherr (1985)]. Complex geom-

etry frequently requires the introduction of in-

ternal boundaries (e.g., cuts) into the domain and

_'.:_ay result in very skewed grids and regions of un-

acceptably low spatial resolution. The introduction

" . of internal boundaries increases the bookkeeping

= !K _ required in the flow solver and can require modifi-

cations to the solution algorithm. One novel ap-

_' proach utilizing a global mesh is described by

Jameson, Baker, and Weatherhill (1986). The major

thrust of this work is to use a finite volume

algorithm based on tetrahedrons and eliminate the

requirement for an ordered mesh. More data struc-

ture is required to define the relationships among

the grid points comprising the volumes.

Domain decomposition includes many techniques:

zonal or grid patching [e.g., Hessenius and Pulliam

(1982), Rai (1984), and Hoist et al. (1985)], and

grid embedding/oversettings [e.g., Atta and Vadyak

(1982), Benek et al. (1983), Venkatapathy and

Lombard (1985), and Berger (1982)]. The basic idea

of this strategy is the subdivision of the computa-

tional domain into regions (not necessarily dis-

joint) that can be more easily meshed. An addi-

tional advantage is that each subdomain may be

treated separately and a different flow model or

solution algorithm used in each. Such flexibility

provides economies in computer resources as the

more expensive viscous flow solvers can be confined

to regions where viscosity dominates the flow. The

key to successfully implementing this strategy is

provision of a means of intergrid communication.

This is the point at which the various techniques

differ most widely. All these techniques require

additional bookkeeping to facilitate communication.

Presently, no one method has been demonstrated

to be clearly superior. It seems likely that some

synthesis of the various strategies will become the

method of choice. In the meantime, we have chosen

the grid-embedding approach as it includes grid

patching as a special case and thus provides a flex-

ible method for accomplishing a broad range of flow

simulations. In this paper we will describe our

experience with the chimera scheme which was first

developed by Benek, Steger and Dougherty (1983).

The three-dimensional, color graphics code required

to support this effort was developed by Buning and

Steger (1985).

2.0 DESCRIPTION

The chimera grid-embedding technique is a do-

main decomposition strategy and as such has two

principal elements: (i) decomposition of the domain

into subdomains which typically overlap and (2) com-

munication among the subdomains. The division into

subdomains is arbitrary; the major considerations

are the identification of regions that may be

easily meshed, and perhaps the isolation of special

regions of the flow (e.g., where viscous effects

are important). The chimera implementation in-

creases the flexibility of subdomain selection by

removing regions of a mesh common to an embedded

grid. That is, an embedded mesh introduces an

artificial boundary or "hole" into the mesh in

which it is embedded, figure 1. Because the regions

interior to the hole do not enter into the solution

process, intergrid communication is simplified since

communication among the grids is restricted to the

transfer of boundary data. Appropriate boundary

values are interpolated from the mesh or meshes in
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Figure 1. Hole boundary in embedded grid G_+ 1

caused by solid boundary in G_.

which the boundary is embedded. The chimera proce-

dure naturally separates into two parts, (I) gen-

eration of the composite mesh and associated inter-

polation data and (2) solution of the flow model or

models on each mesh. Each part is embodied in a

separate computer code, PEGSUS and XMER3D. PEGSUS

takes independently generated component or sub-

domain grids and the embedding specifications as

input and automatically constructs the composite

mesh and computes the interpolation data which are

output. XMER3D takes the PEGSUS output and flow

specifications as input and solves the appropriate

flow model on each grid.

2.1 PEGSUS

Automatic generation of a composite mesh from

the input component grids requires PEGSUS to (1) es-

tablish the proper lines of con_nunication among the

grids through appropriate data structure, (2) con-

struct holes within grids, (3) identify points with-

in holes, (4) locate points from which boundary

values can be interpolated, and (5) evaluate inter-

polation parameters. In addition, PEGSUS performs

consistency checks on the interpolation data to

assure their acceptability and constructs output

files with the data structures appropriate to

XMER3D. The most recent version of PEGSUS allows

very general interactions among grids as indicated

in figure 2. In addition, any grid may introduce

a hole into any other mesh. Details of the hole

construction process, and associated data struc-

tures, are provided by Benek et al. (1983, 1985,

and 1986). A trilinear interpolation is used to ob-

tain boundary data.

2.2 XMER3D

The implementation of the chimera scheme must

provide for the use of multiple flow models. The

current choice of models is the 3-D Euler equations

for inviscid flow and the 3-D thin-layer Navier-

Stokes equations for viscous flow. The algebraic

model of Baldwin/Lomax (1978) is used to simulate

turbulent flow. The implicit, approximate factori-

zation scheme of Beam and Warming (1976 and 1977)

is used to solve the model equations. The

implementation follows that of Pulliam and Steger

(1978) and uses explicit boundary conditions.

Modifications to accommodate the chimera scheme are

described by Benek et al. (1986).

Intergrid Communication Paths

G 1

G 2 -- G 3

G 4 G 5

Figure 2. Structure of embedded grids.

3.0 APPLICATIONS

A major motivation for the development of the

chimera scheme at the AEDC was the requirement to

provide routine computational support to testing.

Estimates of the effects of the wind tunnel environ-

ment on aerodynamic data are of particular interest.

Typically, lead times are short and grid generation

is usually the pacing item in performing CFD simu,

lations. Also, there is the requirement to compute

time-dependent flows involving aerodynamic configu-

rations in relative motion as exemplified by the

Space Shuttle booster configuration and store sep-

aration from military aircraft.

The 3-D chimera scheme has been used to com-

pute both viscous and inviscid flows over a variety

of configurations. These include wing/body/tail,

bodies in close proximity, cavity flows, and base

flows for Mach numbers spanning the range from sub-

sonic to supersonic. The following sections will

illustrate some of these applications of the

chimera scheme.

3.1 Inviscid Flows

The flow about a three-body configuration

(fig. 3) consisting of three ellipsoidal bodies in

a triangular arrangement was computed for a free-

stream Mach number, M_ = 0.8, and angle of attack,

= -2.0 deg. The composite mesh contained three

grids and 57,750 points. The component grids were/

constructed using a hyperbolic grid generator de -P

scribed by Steger and Chaussee (1980) and Kinsey

and Barth (1984). Mach number contours are shown

in figure 4. The contours indicate that the ex-

pected symmetries exist in the flow.
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ellipsoids, M = 0.80, a = -2 deg.

One of the intended uses of the chimera scheme

at the AEDC is the computation of wind tunnel wall

and support interference [e.g., Kraft et al. (1986)

and Suhs (1985)]. A version of the scheme was con-

verted to this purpose. The model shown in figure 5

was designed for assessment of wind tunnel wall in-

terference and it consists of a blunted ogive-

cylinder and a mid-mounted wing and tail. The wing

and tail are constant chord planforms swept back at

30 deg and have no twist or taper. Cross sections

parallel to the plane of symmetry are NACA-0OI2

airfoils. Figure 6 illustrates the meshes used to

represent the wall interference model shown in

figure 5. The wind tunnel walls and a portion of

the sting support are also represented. Figure 6

shows the outer boundaries of the grids about the

fuselage, wing, and tail; figure 7 illustrates the

model embedded in the tunnel mesh. The region de-

void of mesh lines on the tunnel symmetry plane in

figure 7 represents the hole in the tunnel grid in-

troduced by excluding points in the vicinity of the

model from the solution in the tunnel grid.

17.1 Radius

12.9Radius : -
/
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Figure 5. Wing/body/tail configuration.
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Figure 6. Composite grid for fuselage, sting, wing,

and tail grids.
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Figure7 illustratestheflexibility inherent
in thechimerascheme.Themodelgeometryandsting
gridswereconstructedbyaddingameshcontaining
thesting to anexistingmeshusedto modelthe
fuselage.Thecomponent-by-componentconstruction
processis particularlyusefulfor wall interference
calculationsbecausenoadditionalgrid generation
is requiredto changemodelangleof attack. All
that is requiredis thatthegridsrepresentingthe
windtunnelmodelberotatedrelative to thetunnel
meshandbere-embeddedin it. PEGSUSperformssuch
transformationsoncomponentgridsbya single
changeof input.

Figure8 illustrates thecomponentgridsused
to representa generictransportconfigurationfor
awall interferenceassessment.In this case,three
gridscontaininga totalof 201,000pointsareused.

Severalgrid generatorswereusedto construct
thecomponentgridsshownin figures6 through8.
Theseincludea two-dimensionalgrid generatorde-
velopedbySorenson(1980)andthethree-dimensional
generatorsdevelopedbySoni(1985)andThompson
(to bepublishedin 1987).

Machnumbercontoursonthewall interference
modelarepresentedin figure9 [Beneket al. (1985
and1986)].Thetunnelsolutionobtainedonthe
gridsshownin figures6and7 correspondsto
M_= 0.90and_ = 4 deg.Thecontoursjoin smooth-
ly acrossmeshboundaries.Theshockwaveonthe

201•
]

1.0_

Z L

io

-l.OI

-2. 0

.,...

5.N_-----..._ " " - 1.0
-4. O-" 2.0

0

Figure 8. Fuselage and body grids for a

transport configuration.
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Figure 9. Mach number contours for tunnel solution
of wing/body/tail configuration,

M = 0.9, a = 4 deg.

wing ban be_seento continue around the fuselage.

The figure illustrates the effect of decreasing

spatial resolution in high gradient regions. The

shock wave can be seen to be smeared on the fuselage

compared to the wing because of the decreased

resolution in the fuselage grid. Figure 10 [Benek

et al. (1985)] presents a comparison of computed

and meas"red wing and fuselage pressure coefficients

for M = 0.9 and _ = 2 deg. The solution corre-

sponds to an interference-free flow on a composite

mesh with 157,540 points. Details of wall inter-

ference computations will be pregented at the AIAA

19th Fluid Dynamics, Plasma Dynamics and Laser Con-

ference, June 1987.
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Wing/body/tail solution, M = 0.90,

= 2 deg (open symbols, upper sur-

face; solid symbols, lower surface).

3.2 Viscous Flows

The chimera scheme was used to compute several

3-D viscous flows: cavity flow, the flow about a

three-body configuration and the flow about a blunt-

based projectile. The cavity flow simulation is

time-dependent because of the fluctuating free shear

laye_ over the cavity. The cavity has a length-to-

depth ratio of 5.6 and a length-to-width ratio of

3.35. Figure ii illustrates the composite mesh used

to represent the cavity/flat-plate flow field. The

composite mesh has two grids, a total of 157,627

points, and no holes. The component grids are

stretched cartesian nets with clustering near the

solid boundaries and in the shear layer. Figure 12

presents computed Mach number contours in the

streamwise plane of symmetry for M= = 0.74. The

contours correspond to the flow at a single instant

of time. The three-dimensional nature of the flow

is demonstrated in figure 13 which shows the flow in

a plane normal to the stream direction and located

half way down the cavity. Details of this computa-

tion and additional solutions will be presented at

the AIAA 19th Fluid Dynamics, Plasma Dynamics and

Laser Conference in June 1987.
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Figure 13. Cross flow vector vectors at center

of cavity for M = 0.74.

The flow about a configuration of three bodies

in close proximity was computed. Figures 14 and 15

show the structure of the composite grid. Seven

component grids with 496,216 points represent the

flow field. Each body has a single viscous grid and

is embedded in a cylindrical mesh which has been

segmented into three overlapping sections. A hemi-

spherical mesh surrounds the entire configuration

Figure 15 shows a projection of the grids onto the

symmetry plane of the lower body in figure 14 and

illustrates the overlaps among the component grids.

The composite mesh shows a range of grid inter-

actions: patching among grids, e.g., G2, G 3 and G4,

hole production by grids, e.g., G5, G 6, G 7 in meshes

G2, G3, and G 4, and holes crossing grid boundaries,

e.g., G5 across G 2, G 3, and G 4. Detailed compari-

sons of computations and experimental data at sev-

eral transonic Mach numbers and angles of attack

will be presented at the 8th AIAA Computational

Fluid Dynamics meeting in June 1987.
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Figure 14. Multiple bodies in close proximity.
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Figure 15. Projection of grids for multiple body

configuration in symmetry plane of G 7.

The final example is the flow about a blunt-

based projectile. The composite mesh shown in

figure 16 consists of two "patched" grids contain-

ing a total of 68,000 points. This flow is being

examined as part of a sting interference study. A

comparison of computed and measured pressure coef-

ficients [Kayser and Whiton (1982)] is given in

figure 17 for the transonic flow conditions of

M = 0.91 and _ = 0 deg. Comparisons of experi-

mental and predicted values of base pressure are

also in good agreement. Additional computations on

similar configurations are being made.
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= 0 deg.

4.0 DISCUSSION

Sections 2 and 3 described our experience with

the chimera scheme. However, there are several

other aspects of its use that cannot be as clearly

documented and several questions remain unanswered.

Perhaps, the most significant change that was made

from the two-dimensional (2-D) work reported by

Benek et al. (1983) was a change from the mixed 2nd/

4th-order accurate approximations of Pulliam and

Steger (1978) to a consistently 2nd-order approxima-

tion. Large oscillations in the solution with the

mixed-order scheme occurred when grid boundaries

crossed high gradient regions. Switching to a 2nd-

order scheme has eliminated this problem.

Another question that commonly arises involves

the interpolation at gri_ boundaries. Is the bound-

ary approximation conservative? Our experience in-

dicates that the major factor affecting accuracy at

the boundaries is the resolution between the grids

in the neighborhood of the boundary. Whenever there

is a "large" mismatch in resolution, convergence

slows and large oscillations in the solution are

evident near the interface. Should the mismatch

occur where the interface crosses a high gradient

region, the situation is exacerbated. A more de-

tailed and systematic study of this aspect of

domain decomposition techniques is in order.

SUMMARY

We have described our experience with the

chimera grid-embedding scheme. The method was ap-

plied to the computation of transonic wall inter-

ference with particular success and is being used

routinely for support to testing at the AEDC. Ex-

perience with the viscous version is still being

accumulated, but the potential to compute a wide

range of flows has been demonstrated. Component

grids have been generated by several two- and

three-dimensional grid codes which employ algebraic

and partial differential equations as generators.

We experienced no difficulties combining grids con-

structed by the various methods into a composite

mesh.
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